

Acvatix Valves and Actuators

Range overview

Building Technologies

Acvatix valves and actuators – the decisive components for every economical and efficient HVAC plant

Based on many years of experience, extensive know-how and leading edge technology, Siemens offers the Acvatix[™] line of products, a comprehensive range of valves and actuators for use in the generation, distribution and consumption in heating and cooling, as well as in district heating applications. Hence, Acvatix satisfies all requirements in the HVAC field plus those of refrigeration and industrial applications.

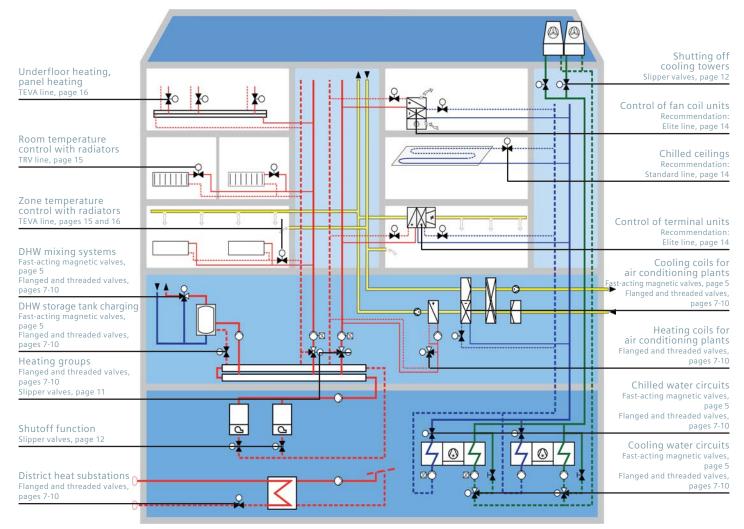
Whether for single-family houses or apartment blocks, complex air conditioning plants in modern office buildings or plants with large volumetric flows, Acvatix valves and actuators excel in high quality and long life. They ensure well-being and comfort and support you when it comes to energy optimization, modernization and retrofit projects.

Complete range of valves and

actuators for all types of applications HVAC and refrigeration systems operate correctly only if every plant component works reliably and accurately. The Acvatix line from Siemens offers the right valves and actuators for all your needs, all types of media, and an extensive range of applications:

- Valves and actuators for small, medium-size and very large HVAC and refrigeration systems
- Valves and actuators for room, zone and radiator applications
- 2- and 3-port seat valves, butterfly and slipper valves
- Flanged, threaded and soldered connections
- Valves driven by magnetic actuators for difficult controlled systems
- Actuators with modulating,
 3-position or 2-position control signals
- Actuators operating on AC / DC 24 V or AC 110 / 230 V

Straightforward selection


Siemens offers you tools for sizing and selecting valves and actuators, such as Easy VASP™, valve sizing rules, data sheets and online tools, and conducts standard, customized and practiceoriented training courses for planning engineers, service engineers and the engineering.

Fast delivery

Siemens' global sales network ensures fast and uncomplicated delivery.

Highlights

- Contribution to energy optimization
- Extensive product range for all types of applications
- Straightforward selection of valves and actuators
- Fast delivery

Actuating devices for HVAC and industrial plants

The functioning principle of magnetic control valves is simple: Modulating voltage is applied to a coil. The voltage pushes the metal core inside the coil against a spring, positioning the core as a function of voltage. This makes possible very fast and accurate control changes without practically causing wear and tear. Since magnetic drives produce relatively small positioning forces in comparison with motoric or electrohydraulic actuators, magnetic control valves are equipped with a pressure-compensating system. Hence, the magnetic positioning force and thus the amount of energy needed are only small.

An important design detail is the flexible valve plug which enables the valve to open without the typical inlet jump known from conventional control valves. This allows very accurate control of small loads.

The benefits

- Short positioning time (1 second)
- Highest resolution (1:1000)
- Opening without inlet jump
- Perfect low load control
- Accurate valve characteristic and positioning control

The features at a glance

- 2-port- and 3-port applications
- Selectable valve characteristic (equal-percentage and linear)
- Flanged and threaded connections
- Closed when deenergized

Air conditioning plants

Energy savings in ventilation plants thanks to improved part load behavior

Due to outdoor climate changes the proportion of the number of operating hours in which ventilation and air conditioning plants need to operate under part load conditions increases. As a result, the previous boundaries between typical winter and summer operation tend to fade. So it occurs more and more often that cooling is required in the winter also, or during intermediate seasons. With a more accurate control of temperature and humidity, energy savings of up to 30 percent is possible. Since "part load situations" occur more and more frequently while cooling costs rise over-proportionally, it is worth the effort to check the control loops and to readjust the operating parameters. In view of improved control performance, it is often economical to substitute conventional control valves by magnetic control valves.

In contrast to heating plants where temperature control is rather simple, chilled water installations require a more sophisticated control system. Large mass volumes with small temperature differentials call for large and fast-reacting valves. Pressure-compensated magnetic valves have kvs values of up to 130 m3/h and a positioning time of less than 3 seconds with a resolution of 1:1000 and are therefore many times faster and more

Chilled water in refrigeration plants

Domestic hot water plants

DHW heating in instantaneous heating systems

Optimally controlled chilled water cycles

accurate than any other types of valves.

In DHW heating plants also, fast-acting instantaneous flow systems with plate heat exchangers increasingly replace the former large storage systems. The driving force behind this development are more stringent hygienic regulations aimed at reducing the risk of legionella viruses, and the efforts made to eliminate the heat losses resulting from large and therefore slow systems. Small storage tanks are only used as buffers to cover peak loads. Due to the heat transmission characteristics of plate heat exchangers, very short valve positioning times are absolutely essential. Magnetic control valves with a positioning time of 1 second guarantee a perfect control performance.

District heating and steam applications

Space-saving solutions for district heating plants

In the case of small or medium plant capacities, premanufactured compact district heat substations are used more and more frequently. Since heat transmission in these compact exchangers is considerably quicker, the controlled systems must also become faster. Where, previously, motorized valves with positioning times of 15 to 30 seconds were adequate to handle the large volumetric flows of the counter-flow units, today's plate heat exchangers with their small volumetric flows and large heat exchange surfaces demand very fast-acting valves with short positioning times. Positioning times of a few seconds are considered ideal, but such short times can practically only be attained when employing magnetic valves.

Industrial processes

Innovations thanks to better control performance

A large number of today's innovations in the industrial sector are based on manufacturing procedures taking place under well-defined environmental conditions, be it the production of machines, semiconductors, food-stuff or medicine. While years ago temperature accuracies within a few tenths of a degree Kelvin were sufficient, proportional magnetic valves can offer accuracies in the area of a few thousandth of a degree Kelvin.

Actuating devices for HVAC and industrial plants

Threaded / flanged 2-port and 3-port valves with integrated magnetic actuator

Typical application			Standard range		tasheet		formance				
 Supply air con 	trol with / with	out cascade	MXG461	N4	455	MP for n	nedia conta	aining minerals			
 Fast-acting he 	at exchanger co	ontrol	MXF461	N4	455	MS with	valve body	y made of stainless cast steel			
 Domestic hot 	water mixing co	ontrol	M3P	N4	457	MM silic	on-free ve	rsion			
 High-precisior 	process contro	ol	MXG461B	N4	461						
			MVF461H	N4	-361						
			MXG461S	N4	465						
			MXG462S	N4	466						
Combinations	Datasheet	Type referen	ce DN	G [Inch]	k _{vs}	∆ p ₅¹) [kPa]	∆ p _{max} [kPa]	Actuators AC 24 V Positioning signal			
PN16	N4455	MXG461.15	15	G 1B	0.6/1.5/3	300	300	010 V			
		MXG461.20-	5.0 20	G 1¼B	5	300	300	or			
		MXG461.25-	8.0 25	G 11/2B	8	300	300	210 V			
—		MXG461.32-1	I 2 32	G 2B	12	300	300	or			
		MXG461.40-2	20 40	G 2¼B	20	300	300	420 mA			
	**	MXG461.50-3	30 50	G 2¾B	30	300	300				
1 °C130 °C	-										
PN16	N4455	MXF461.15	15	-	0.6/1.5/3	300	300	010 V			
	111135	MXF461.20-5		-	5	300	300	or			
		MXF461.25-8		-	8	300	300	210 V			
	-	MXF461.32-1		-	12	300	300	or			
	-	MXF461.40-2	20 40	-	20	300	300	420 mA			
ΥL	110	MXF461.50-3		-	30	300	300				
		MXF461.65-5	50 65	-	50	300	300				
	N4457	M3P80FY	80	-	80	300	300	010 V oder			
1 °C130 °C		M3P100FY	100	-	130	200	200	420 mA			

 $.. = k_{vs}$ value

Note:

To be used as 2-port or mixing valves, not as diverting valves. When used as 2-port valves, the bypass is to be closed off with a blanking flange and screws.

Combinations	Datasheet	Type reference	DN	G [Inch]	k _{vs} [m³/h]	∆ p ₅¹) [kPa]	∆ p _{max} [kPa]	Actuators AC/DC 24 V Positioning signal
PN16	N4461	MXG461B15-0.6	15	G 1B	0.6	1000	1000	010 V
		MXG461B15-1.5	15	G 1B	1.5	1000	1000	or
DVGW		MXG461B15-3	15	G 1B	3	1000	1000	210 V
Tudort		MXG461B20-5	20	G 1¼B	5	800	800	or
	and a	MXG461B25-8	25	G 11/2B	8	700	700	020 mA
0		MXG461B32-12	32	G 2B	12	600	600	or
¥──_•	Int	MXG461B40-20	40	G 2¼B	20	600	600	420 mA
		MXG461B50-30	50	G 2¾B	30	600	600	
-20 °C130 °C	Detechert	T		C [lack]		Δ p _s ¹⁾	∆p _{max}	Actuators AC/DC 24 V
	Datasheet	Type reference	DN	G [Inch]	k _{vs} [m³/h]	[kPa]	[kPa]	Positioning signal
PN16	N4361	MVF461H15-0.6	15	-	0.6	1000	1000	010 V
		MVF461H15-1.5	15	-	1.5	1000	1000	or
		MVF461H15-3	15	-	3	1000	1000	210 V
		MVF461H20-5	20	-	5	1000	1000	or
		MVF461H25-8	25	-	8	1000	1000	020 mA
		MVF461H32-12	32	-	12	1000	1000	or
		MVF461H40-20	40	-	20	1000	1000	420 mA
	and and	MVF461H50-30	50	-	30	1000	1000	
1 °C 190 °C	0							

<u>1 °C...180 °C</u>

¹⁾ Only for use as 2-port valves

Δp_s Maximum permissible differential pressure at which the motorized valve will close securely against the pressure (close off pressure)
 Δp_{max} Maximum permissible differential pressure across the valve's control path, valid for the entire actuating range of the motorized valve (maximum recommended operating differential pressure)

Large- and short-stroke valves with electromotoric actuators

This is the right combination of valves and actuators for all types of small and medium-size HVAC plants, offering straightforward planning, installation and commissioning. Electromotoric actuators are the ideal drives for the majority of standard applications in the fields of heating, ventilation and air conditioning. The extensive range of motorized valves also excels in an excellent price/performance ratio.

Large-stroke valves with with electrohydraulic actuators

For applications where great forces and safety are of prime importance, large-stroke valves in connection with electrohydraulic actuators are the number one choice. On district heating applications with their demanding requirements and, generally, on large plants, electrohydraulic actuators are unmatched. They excel in great positioning forces, robustness, spring return facility and a host of extra functions. The electrohydraulic actuators are ideally suited for the control of primary plant and for distribution circuits with a large volumetric flow.

The benefits

- Excellent price/performance ratio for all types of HVAC standard applications
- Proven in their millions
- Very versatile covering a broad application area
- The features at a glance
- Single seat, metallic seating
- Long life expectancy
- Low noise level
- Leakage rate < 0.02% k_{vs}
- 3-port valves can be used as mixing or diverting valves

The benefits

- Powerful for large volumetric flows and great differential pressures
- Safe and reliable even under extreme operating conditions
- Economical robust and long service life

The features at a glance

- Positioning forces of 2,800 N for closing pressures up to 4,000 kPa
- For safety applications with spring return times below 8 s
- Metallic sealing for temperatures up to 220 °C thermo oil up to 350 °C
- Safe against dirt and low noise level thanks to optimized plug design
- Leakage rate < 0.02% k_{vs}
- 3-port valves can be used as mixing or diverting valves
- Threaded and flanged valves up to PN 40 and DN 150
- k_{vs} up to 300 m³/h
- Differential pressures up to 1.600 kPa

Threaded and flanged slipper valves with electromotoric actuators

Motorized slipper valves for basic applications in smaller heating systems. 3-and 4-port slipper valves are ideally suited for small, easy-to-control heating systems with small differential pressures. Both slipper valves and butterfly valves are available with directly coupled rotary actuators. These motorized valves can be installed in no time since linkages are no longer required, representing affordably priced solutions.

Butterfly valves with electromotoric actuators

For shutoff and changeover functions in closed or open circuits. The butterfly valves cover a wide application area. The VKF46 line features air bubble-tight shutoff. For standard applications in closed circuits, the VKF41 line offers affordably priced solutions.

The benefits

- Smooth operation long service life
- Compatible 3-position actuator for all needs
- Time-saving directly mounted actuators for easy commissioning

The features at a glance

- 3-port and 4-port slipper valves, internally threaded, externally threaded or flanged connections in nominal sizes DN 20 through DN 150
- Electromotoric rotary actuators operating on AC 230 V or AC 24 V, 3-position signal

The benefits

- Smooth operation long service life
- Compatible 3-position actuator for all needs
- Time-saving directly mounted actuators for easy commissioning

The features at a glance

- Butterfly valves from DN 40 through DN 600
- Directly mounted actuators can be combined to deliver torgues up to 1.200 Nm
- Electromotoric rotary actuators operating on AC 230 V or AC 24 V, 3-position signal
- k_{vs} up to 29,300 m³/h
- Closing pressure up to 1.600 kPa

High performance 2-port and 3-port valves VXG..., VVF..., VXF...

Valves	Description		Type suffix	Example
VXG41	Tight bypass, leal	kage rate 00.02 %	01	VXG41.1501
Valves	Temperature	Sealing gland	Type suffix	Example
VVF45, VVF41, VXF41	until 180 °C	Teflon	4	VVF41.654
VVF41, VXF41	until 180 °C	Teflon, silicon free	5	VXF41.505
VVF61, VXF61	until 220 °C	Teflon, silicon free	5	VVF61.235
VVF61, VXF61 (kvs ≥ 1,2 m³/h)	until 350 °C	Teflon	2	VVF61.492
VVF52	until 180 °C	Teflon	А	VVF52.15-2A
VVF52	until 180 °C	Teflon, silicon free	M	VVF52.15-4M
VVF52 (k _{v s} ≥ 1,25 m³/h)	until 180 °C	Teflon (saturated, superheated stream)	G	VVF52.15-8G

Threaded 2- and 3-port valves with 20 mm stroke actuators

								9	Stroke			20	mm		
Typical applicati	ions	Actuators			Datashe	eet			Force	70	0 N	100	00 N	280	0 N
 Heating plant Ventilation ar conditioning Heat generati Heat distribut District heating 	nd air plant ion tion	SQX SKD32/3 SKD60/62 SKB32/8 SKB60/62	2 32 2		N4554 N4561 N4563 N4564 N4566		oning tir		Spring return function]
		AC 230 V			signal	SQX 150	SKD 120	SKB 120	-	COV:	32.00	CKD.	32.50	SKB3	2 50
	Ŷ	AC 230 V	3-posi 3-posi			150	120	120	-	SQA:	52.00	-	32.50	SKB3	
			3-posi			35	120	120	-	SQX	32.03	JKD.	52.51	SKDS	2.51
			3-posi			55	30		 ✓ 	547.	2.05	SKD	32.21		
		AC 24 V	3-posi	tion		150	120	120	-	SQX8	32.00	SKD	82.50	SKB8	32.50
Øi	11		3-posi				120	120	✓			SKD	82.51	SKB8	32.51
			3-posi			35			-		32.03				
			010			35	30 30	120 120	-	SQ	X62		D60 D62	SKI	360
			010	v, 1	2011/1	1		120							
Valves	Datasheet	Type refe	rence	DN	G [lr	-	vs [m³/h]			∆ p ₅ [kPa]	∆ p _{max} [kPa]	∆ p ₅ [kPa]	∆ p _{max} [kPa]	∆ p ₅ [kPa]	∆ p _{max} [kPa]
PN16	N4363	VVG41.11		15	G 1E			1.6/2.5	/4	1600	800	1600	800	1600	800
	h	VVG41.20		20	G 11		.3			1600	800	1600	800	1600	800
		VVG41.25		25	G 11		0			1550	800	1600	800	1600	800
	10	VVG41.32		32	G 2E		6			875	800	1275	800	1600	800
		VVG41.40 VVG41.50		40 50	G 21 G 23		.5 .0			525 300	525 300	775	775 450	1600 1225	800 800
		VVG41.50		50	G 25	/4D 4	.0			500	500	450	450	1225	800
- 25 °C150 °C															
PN16	N4463	VXG41.13		15	G 1E		.6			-	800	-	800	-	800
	•	VXG41.14	01	15	G 1E		5			-	800	-	800	-	800
		VXG41.15		15	G 1E					-	800	-	800	-	800
1		VXG41.20		20	G 11		.3			-	800	-	800	-	800
+		VXG41.25		25	G 11		0 6			-	800	-	800	-	800
6.		VXG41.32 VXG41.40		32 40	G 2E G 21		6 5			-	800 525	-	800 775	-	800 800
- 25 °C150 °C		VXG41.40 VXG41.50		40 50	G 23		.0			-	525 300	-	450	-	800
-23 C130 C		VAG41.50		50	6.25	4D 4	0			-	300	-	450	-	800

Δp_s Maximum permissible differential pressure at which the motorized valve will close securely against the pressure (close off pressure) Δp_{max} Maximum permissible differential pressure across the valve's control path, valid for the entire actuating range of the motorized valve (maximum recommended operating differential pressure)

Union nuts for threaded valves

	Туре				
	Set of 2	Set of 3	G [Inch]	R, Rp [Inch]	Material
	ALG132	ALG133	G 1/2	R %B (externally threaded)	Brass
	ALG142	ALG143	G 3⁄4	R ½B (externally threaded)	Brass
$\mathbf{R} = \begin{bmatrix} \mathbf{T} & \mathbf{T} \\ \mathbf{T} & \mathbf{T} \end{bmatrix} \mathbf{G}$	ALG122	ALG123	G 3/4	Rp ¾	Malleable cast iron
	ALG152	ALG153	G 1	Rp 1/2	Malleable cast iron
	ALG202	ALG203	G 1¼	Rp 3/4	Malleable cast iron
	ALG252	ALG253	G 11/2	Rp 1	Malleable cast iron
	ALG322	ALG323	G 2	Rp 1¼	Malleable cast iron
Rp ⋕ <u>†</u> ′∔ ∦ G	ALG402	ALG403	G 2¼	Rp 11/2	Malleable cast iron
	ALG502	ALG503	G 2¾	Rp 2	Malleable cast iron

Valve side: Cylindrical thread G to ISO 228-1

Pipe side: ALG... with cylindrical Rp- or tapered R-thread to ISO 7-1

	Туре			
	Set of 2	G [Inch]	Ø d [mm]	Material
\square	ALS152	G 3⁄4	21.3	Steel, weldable
	ALS202	G 1	26.8	Steel, weldable
d <u> </u> <u>_</u> i <u> </u> G	ALS252	G 1¼	33.7	Steel, weldable

Pipe side: ALS... with welded connection

Flanged 3-port valves with 20 / 40 mm stroke actuators

Typical applications		Actuators		Datashe	et			Stroke Force	700 N	20 mm 1000 N	2800 N	40 mm 2800 N
Heating plant		SQX		N4554								
Ventilation and air		SKD32/8	32	N4561					And and a second second	Construction of the		
conditioning plant		SKD60/62	2	N4563				5	-	0-	R	
Heat generation		SKB/SKC	32/82	N4564				Spring return function				
Heat distribution		SKB / SKC	50/62	N4566				on _r	142			
								Ct id		VT/		17
\bigcirc						oning ti		l pri	000			
			Positioning	j signal	SQX	SKD	SKC/SKB	P S				
		AC 230 V	3-position		150	120	120	-	SQX32.00	SKD32.50	SKB32.50	SKC32.60
			3-position			120	120	\checkmark		SKD32.51	SKB32.51	SKC32.61
			3-position		35			-	SQX32.03			
	=		3-position		450	30	100	✓		SKD32.21		
h h		AC 24 V	3-position		150	120	120	- √	SQX82.00	SKD82.50	SKB82.50	SKC82.60
ŶL L			3-position 3-position		35	120	120	- V	SQX82.03	SKD82.51	SKB82.51	SKC82.61
			010 V, 4.	20 m∆	35	30	120	-	SQX62.05	SKD60	SKB60	SKC60
			010 V, 4.		55	30	120	~	507.02	SKD60	SKB62	SKC62
			010 V, 1.			50	120		1	SREEZ	JRB02	51(602
									Δp _{max}	Δp _{max}	Δp _{max}	Δp_{max}
/alves Da	tasheet	Type refe	rence	DN		k _{vs} [m ³	/h]		[kPa]	[kPa]	[kPa]	[kPa]
PN6	N4410	VXF21.22	25 1)	25		1.9/3			300	300	300	-
		VXF21.25		25		2.5/4	/ 6.3 / 10	1	300	300	300	-
\mathbf{X}		VXF21.39		40		12/19			300	300	300	-
		VXF21.40		40		16/25			300	300	300	-
		VXF21.50		50		31			300	300	300	-
👝 🤖 💷		VXF21.50	-40	50		40			300	300	300	-
		VXF21.65	()	65		49			175	275	300	-
		VXF21.65	-03	65		63			175	275	300	-
		VXF21.80	100	80 80		78 100			100	175 175	300 300	-
		VXF21.80 VXF21.90	-100	100		100			-	-	- 300	200
10 °C150 °C		VXF21.30	0-160	100		160			_	_	_	200
PN10	N4420	VXF31.15-		15	,	2.5/4			300	300	300	- 200
	111120	VXF31.24		25		5/7.5			300	300	300	-
		VXF31.25		25		6.3/10)		300	300	300	-
		VXF31.39		40		12/19	-		300	300	300	-
		VXF31.40		40		16/25			300	300	300	-
1		VXF31.50		50		31			300	300	300	-
		VXF31.50	-40	50		40			300	300	300	-
	(A)	VXF31.65		65		49			175	275	300	-
		VXF31.65	-63	65		63			175	275	300	-
	y	VXF31.80		80		78			100	175	300	-
		VXF31.80	-100	80		100			100	175	300	-
		VXF31.90		100		124			-	-	-	200
		VXF31.100 VXF31.91	J-160	100 125		160 200			-	-	-	200 150
		VXF31.91	5 250	125		200			-	-	-	150
		VXF31.92	5-230	150		300			_	-	_	100
10 °C150 °C		VXF31.150)-315	150		315			-	-	-	100
PN16	N4430	VXF40.15		150			5/3/4		300	300	300	-
		VXF40.25		25			/ 7.5 / 10		300	300	300	-
		VXF40.40		40			/ 19 / 25		300	300	300	-
		VXF40.50		50		31/40			300	300	300	-
1.5 - 11		VXF40.65		65		49/63			175	275	300	-
		VXF40.80		80		78/10			100	175	300	-
2-3		VXF40.10		100		124 / 1			-	-	-	200
	-	VXF40.12		125		200/2			-	-	-	150
10 °C150 °C		VXF40.15		150		300/3	15		-	-	-	100
PN16	N4440	VXF41.14.		15		1.9/3			800	800	800	-
		VXF41.24		25		5/7.5			800	800	800	-
		VXF41.39		40		12/19			500	750	800	-
		VXF41.49. VXF41.65		50 65		19 / 31 49			350	500	800	500
		VXF41.65 VXF41.80		80		49 78			-	-	-	350
		VXF41.80		100)	124			-	-	-	250
and the second sec		VXF41.91		125		200			-	-	-	175
10 °C150 °C (180 °C)		VXF41.92		150		300			-	-	-	100
PN40	N4482	VXF61.14.	.15	150		1.9/3			-	1200	1600	-
		VXF61.24		25		5/7.5			-	1200	1600	-
		VXF61.39		40		12/19			-	-	1200	-
- 20		VXF61.49.		50		19/31			-	-	1000	-
		VXF61.65		65		49			-	-	-	800
		VXF61.80		80		78			-	-	-	500
		VXF61.90		100)	124			-	-	-	300
		VXF61.91		125		200			-	-	-	200
25 °C220 °C (350 °C)		VXF61.92		150		300						125

8

 $^{1)}$.. = k_{vs}-value

14...15, 22...25, 24...25, 39...40, 49...50 = insert number instead of k_{vs} -value

Flanged 2-port valves with 20 / 40 mm stroke actuators

Typical applica		Actuators		tasheet	Stroke Force	70	0 N	20 i 100	mm 0 N	280	00 N		mm)0 N
 Heating plar Ventilation a conditioning Heat genera Heat distribu District heat 	and air 9 plant tion ution	SQX SKD32 / 82 SKD60 / 62 SKB / SKC32 / 82 SKB / SKC60 / 62	N4 N4 N4	-554 -561 -563 -564 -566									
		D	etails se	e opposing side		SQ	Х	SK	D	SK	В	SK	C
Valves	Datasheet	Type reference	DN	k _{vs} [m³/h]		∆p ₅ [kPa]	∆p _{max} [kPa]						
PN6	N4310		25	1.9 / 3 / 5 / 7.5		600	300	600	300	600	300	-	-
		VVF21.25 ¹⁾	25	2.5/4/6.3/10		600	300	600	300	600	300	-	-
		VVF21.3940 VVF21.40	40 40	12 / 19 16 / 25		500 500	300 300	600 600	300 300	600 600	300 300	-	-
	2	VVF21.50	50	31		300	300	450	300	600	300	-	-
		VVF21.50-40	50	40		300	300	450	300	600	300	-	-
		VVF21.65 VVF21.65-63	65 65	49 63		175 175	175 175	275 275	275 275	600 600	300 300	-	-
		VVF21.80	80	78		100	100	175	175	500	300	-	-
		VVF21.80-100	80	100		100	100	175	175	500	300	-	-
-10 °C150 °C		VVF21.90 VVF21.100-160	100 100	124 160		-	-	-	-	-	-	300 300	200 200
PN10	N4320	VVF31.15	15	2.5/4		1000	300	1000	300	1000	300		- 200
		VVF31.2425	25	5 / 7.5		1000	300	1000	300	1000	300	-	-
		VVF31.25 VVF31.3940	25 40	6.3 / 10 12 / 19		1000	300 300	1000 775	300 300	1000 1000	300 300	-	-
		VVF31.3940	40	16/25		525	300	775	300	1000	300	-	-
	i	VVF31.50	50	31		325	300	475	300	1000	300	-	-
		VVF31.50-40 VVF31.65	50	40 49		325	300 175	475	300	1000	300 300	-	-
		VVF31.65	65 65	63		175 175	175	275 275	275 275	750 750	300	-	-
		VVF31.80	80	78		100	100	175	175	500	300	-	-
		VVF31.80-100	80	100		100	100	175	175	500	300	-	-
		VVF31.90 VVF31.100-160	100 100	124 160		-	-	-	-	-	-	300 300	200 200
		VVF31.91	125	200		-	-	-	-	-	-	200	150
		VVF31.125-250	125	250		-	-	-	-	-	-	200	150
-10 °C150 °C		VVF31.92 VVF31.150-315	150 150	300 315		-	-	-	-	-	-	125 125	100 100
PN16	N4330	VVF40.15	15	1.9/2.5/3/4		1600	300	1600	300	1600	300	-	-
	1	VVF40.25	25	5 / 6.3 / 7.5 / 10		1550	300	1600	300	1600	300	-	-
		VVF40.40 VVF40.50	40 50	12 / 16 / 19 / 25 31 / 40		525 325	300 300	775 475	300 300	1600 1300	300 300	-	-
		VVF40.65	65	49 / 63		175	175	275	275	750	300	-	-
` ```		VVF40.80	80	78 / 100		100	100	175	175	500	300	-	-
		VVF40.100 VVF40.125	100 125	124 / 160 200 / 250		-	-	-	-	-	-	300 200	200 150
-10 °C150 °C		VVF40.150	150	300 / 315		-	-	-	-	-	-	125	100
PN16	N4340	VVF41.4950	50	19/31		350	300	500	400	1400	1000	-	-
	<u></u>	VVF41.65 VVF41.80	65 80	49 78		-	-	-	-	-	-	800 500	600 400
	1-1	VVF41.90	100	124		-	-	-	-	-	-	300	250
10.00 150.00 (180.86	VVF41.91	125	200		-	-	-	-	-	-	200	175
<u>-10 °C150 °C (</u> PN16		VVF41.92 VVF45.4950	150 50	<u>300</u> 19/31		-	-	-	-	- 1600	- 1200	125	100
		VVF45.65	65	49		-	-	-	-	-	-	1600	1000
		VVF45.80	80	78		-	-	-	-	-	-	1600	700
		VVF45.90 VVF45.91	100 125	124 200		-	-	-	-	-	-	1600	450 300
<u>-10 °C150 °C (</u>	,	VVF45.92	150	300		-	-	-	-	-	-	1600	200
PN25	N4373	VVF52.15	15	0.16/0.2/0.25/0.32/0.		2500	1600	2500	1600	2500	1600	-	-
		VVF52.15 VVF52.25	15 25	0.8/1/1.25/1.6/2/ 5/6.3/8/10	2.5/3.2/4	2500	1600 1200	2500 2250	1600 1600	2500 2500	1600 1600	-	-
-20 °C150 °C (180 °C)	VVF52.40	40	12.5 / 16 / 20 / 25		500	400	750	700	2000	1600	-	-
PN40		VVF61.0915	15	0.19 / 0.3 / 0.45 / 0.7 /	1.2/1.9/3		-	4000	1600	4000	1600	-	-
	4	VVF61.2325 VVF61.3940	25 40	3 / 5 / 7.5 12 / 19		-	-	2250	1600 -	4000	1600 1600	-	-
		VVF61.4950	50	19/31		-	-	-	-	4000	1600	-	-
10		VVF61.65	65	49		-	-	-	-	-	-	4000	1000
		VVF61.80 VVF61.90	80 100	78 124		-	-	-	-	-	-	4000	700 450
		VVF61.90 VVF61.91	125	200		-	-	-	-	-	-	4000	450 300

Stroke 5.5 mm Typical applications Actuators Datasheet Force 400 N Heating plant District heating SQS.. N4573 Ventilation and air conditioning plant Positioning signal Positioning time [s] Spring return AC 230 V 150 3-position 150 SQS35.50 SQS35.00 √ 3-position 35 35 SQS35.53 SQS35.03 AC 24 V 150 SQS85.00 3-position 3-position 35 SQS85.03 0..10 V 35 35 ~ SQS65.5 SQS65 2..10 V 35 SQS65.2 **∆p**_{max} [kPa] ∆p₅ [kPa] Valves Datasheet Type reference DN G [Inch] **k**_{vs} [m³/h] PN16 N4364 VVG44.15-.. 0.25/0.4/0.63 1600 400 15 G 1B VVG44.15-.. 15 G 1B 1/1.6 725 400 VVG44.15-... 15 G 1B 2.5/4 400 400 VVG44.20-6.3 20 G 1¼B 6.3 750 400 VVG44.25-10 25 G 11/2B 10 450 400 VVG44.32-16 32 G 28 250 250 16 <u>1...120 °C</u> PN16 VVG44.40-25 40 G 2¼B 25 125 125 N4464 VXG44.15-.. 0.25/0.4/0.63 15 G 1B 400 VXG44.15-.. 1/16 400 15 G 1B VXG44.15-.. 15 2.5/4 400 G 1B -VXG44.20-6.3 G 1¼B 20 6.3 400 VXG44.25-10 25 G 1½B 10 400 -VXG44.32-16 250 32 G 2B 16 _ <u>1...120 °C</u> **PN25** VXG44.40-25 40 G 2¼B 125 25 N4379 VVG55.15-.. VVG55.15-.. G ¾B G ¾B 0.25/0.4 15 15 2500 1200 2500 0.63 1200 15 15 2300 1/1.6 VVG55.15-.. G ¾B 1200 G ¾B 2.5 2300 1200 VVG55.15-.. VVG55.20-4 20 G 1B 4 1000 1000 VVG55.25-6.3 25 6.3 G 1¼B 800 800 <u>1...130 °C</u>

Threaded 2-port and 3-port valves with 5.5 mm stroke actuators 400 N

 $.. = k_{vs}$ -value

Threaded 2-port and 3-port valves with 5.5 mm stroke actuators 300 N

						Stroke		5.5 mm
Typical applications	Actuators	Datasheet				Force		300 N
Heating plants Ventilation plants	SSC	N4895						
		Positioning signal	Positionin	a time [s]	Sprina re	eturn		
	AC 230 V	3-position	150		· - ·	-	SSC31	
	AC 24 V	3-position	150		-	-	SSC81	
	AC / DC 24 V	010 V	30	30	-	\checkmark	SSC61	SSC61.5
Valves Datasheet	Type referen	ce DN	G [Inch]	k _{vs}	[m³/h]		Δp ₅ [kPa]	Δp _{max} [kPa]
PN16 N4845	VVP45.20-4	20	G 1B	4			350	350
	VVP45.25-6.3		G 1¼B	6.3			300	300
	VVP45.25-10		G 1½B	10			300	300
	VVP45.32-16		G 2B	16			175	175
	VVP45.40-25	40	G 2¼B	25			75	75
<u>1110 °C</u>	10/045 20 4	20	C 4D					250
PN16	VXP45.20-4	20	G 1B	4			-	350
	VXP45.25-6.3		G 1¼B	6.3			-	300
	VXP45.25-10		G 1½B	10			-	300
	VXP45.32-16		G 2B	16			-	175 75
<u>1110 °C</u>	VXP45.40-25	40	G 2¼B	25			-	/5

Note: For DN10...DN15 with k_{vs} = 0.25...2.5 m³/h, VVP45... and VXP45... valves can be used (refer to page 14)

3-port and 4-port slipper valves with rotary actuators

Typical applications	Actuators	Datashee	et	Torque	5 Nm	5 Nm	10 Nm /	12.5 Nm
Small to medium size heating plants	SQK34 / 84 SQK33 SQL33 / 83	N4508 N4506 N4506			1			
0		Desition is not		ania a dina fal				
	AC 230 V	Positioning si 3-position	ignal Positi	oning time [s] 125		SQK33.00	SOL	33.00
T ©		3-position		30				33.03
	AC 24 1/	3-position		135	SQK34.00		5010	22.00
	AC 24 V	3-position 3-position		125 135	SQK84.00		SQL	33.00
				133	59101100			
	Mounting kits				-	ASK32	ASK31	ASK32
-	Type reference	DN		k _{vs} [m³/h]	Δp _{max} [kPa]	Δp _{max} [kPa]	Δp _{max} [kPa]	Δp _{max} [kPa]
PN6 N4241	VBF21.40	40		25	30	30	-	30
	VBF21.50	50		40	30	30	-	30
	VBF21.65 VBF21.80	65 80		63 100	-	-	30 30	-
	VBF21.80	100		160	-	-	30	-
	VBF21.125	125		550	-	-	30	-
· ·	VBF21.150	150		820	-	-	30	-
1120 °C								
3-port slipper valves Externally or internally threaded Datasheet	Type reference	DN	G / Rp [Inch]	k _{vs} [m³/h]	∆p _{max} [kPa]	Δp _{max} [kPa]	∆p _{max} [kPa]	∆p _{max} [kPa]
	VBG31.20	20	G 1¼B	6.3	30	30	-	30
	VBG31.25	25	G 11/2B	10	30	30	-	30
🛛 🏊	VBG31.32	32	G 2B	16	30	30	-	30
	VBG31.40	40	G 2¼B	25	30	30	-	30
1120 °C								
PN10 N4232	VBI31.20	20	Rp 3⁄4	6.3	30	30	-	30
	VBI31.25	25	Rp 1	10	30	30	-	30
	VBI31.32	32	Rp 1¼	16	30	30	-	30
	VBI31.40	40	Rp 1½	25	30	30	-	30
1120 °C								
					Am		An	A m
A nort clinnor volvos	- /	DN	Rp [Inch]	k _{vs} [m³/h]	∆p _{max} [kPa]	∆p _{max} [kPa]	∆p _{max} [kPa]	Δp _{max} [kPa]
	Type reference							20
Internally threaded Datasheet	VCI31.20	20	Rp ¾	6.3	30	30	-	30
Internally threaded Datasheet	VCI31.20 VCI31.25	20 25	Rp ¾ Rp 1	10	30	30	-	30
4-port slipper valves Internally threaded Datasheet PN10 N4252	VCI31.20 VCI31.25 VCI31.32	20 25 32	Rp 1 Rp 1¼	10 16	30 30	30 30	-	30 30
Internally threaded Datasheet	VCI31.20 VCI31.25	20 25	Rp 1	10	30	30	-	30

 Δp_s

Maximum permissible differential pressure at which the motorized valve will close securely against the pressure (close off pressure) Maximum permissible differential pressure across the valve's control path, valid for the entire actuating range of the motorized valve Δp_{max} (maximum recommended operating differential pressure)

Butterfly valves for mounting between flanges, with rotary actuators

Typical applications	Actuators	Datas hee	et Torque	12.5 Nm	20 Nm	40	Nm	100 Nm	400 Nm	1200 Nm
 Shut off or control For closed or open loop HVAC plant 	SQL33 SQL83 SQL35 SQL85 SQL36	N4506 N4506 N4505 N4505 N4505		Ţ					Ro	\$ 0
		Positioning signal	Positioning time [s]						-	
	AC 230 V	3-position	6 ¹⁾					SQL36E65		
4		3-position	12 ¹⁾						SQL36E110	
		3-position	24 ¹⁾							SQL36E160
		3-position	25			SQL36E50F04				
		3-position	25				SQL36E50F05			
		3-position	30	SQL33.03 ²)						
		3-position	125	SQL33.00	SQL35.00					
ليسيها ليسيها	AC 24 V	3-position	125	SQL83.00	SQL85.00					
	²⁾ Torque	10 Nm	e SEZ31: Varial			36E65: 3018	0 s, SQL35E11() 60360 s	s, SQL36E16	50: 120720 s
11	Mounting	kits		ASK33	ASK35.1	ASK35.2	-	-	-	-

Butterfly valv		Type reference	DN	k _{vs} [m³/h]	Δp ₅ [kPa]	Δ [kf		Δp ₅ [kPa]				
PN16		VKF41.40	40	50	500	-	1	-	-	-	-	-
r	11131	VKF41.50	50	80	500	-	-	-	-	-	-	-
		VKF41.65	65	200	500	-	-	-	-	-	-	-
		VKF41.80	80	400	500	-	-	-	-	-	-	-
		VKF41.100	100	760	500	-	-	-	-	-	-	-
		VKF41.125	125	1'000	300	-	-	-	-	-	-	-
		VKF41.150	150	2'100	250	500 ³⁾	500 ³⁾	-	-	-	-	-
		VKF41.200	200	4'000	125	300 3)	300 3)	-	-	-	-	-
I5120 °C												
N16	N4136	VKF46.40	40	50	-	1'600		1'600	-	-	-	-
		VKF46.50	50	85	-	1'600	-	1'600	-	-	-	-
		VKF46.65	65	215	-	1'600	-	1'600	-	-	-	-
_	L	VKF46.80	80	420	-	-	1'600	-	1'600	-	-	-
		VKF46.100	100	800	-	-	1'600	-	1'600	-	-	-
		VKF46.125	125	1'010	-	-	1'000	-	1'000	-	-	-
		VKF46.150	150	2′100	-	-	-	-	-	1'600	-	-
		VKF46.200	200	4'000	-	-	-	-	-	1'000	-	-
		VKF46.250	250	6'400	-	-	-	-	-	-	1'000	-
		VKF46.300	300	8′500	-	-	-	-	-	-	1'000	-
0		VKF46.350	350	11'500	-	-	-	-	-	-	600	-
		VKF46.400	400	14′500	-	-	-	-	-	-	300	-
		VKF46.450	450	20'500	-	-	-	-	-	-	-	300
		VKF46.500	500	21'000	-	-	-	-	-	-	-	300
0120 °C		VKF46.600	600	29'300	-	-	-	-	-	-	-	300
N16	N4136	VKF46.350TS	350	11'500	-	-	-	-	-	-	-	1'000
-		VKF46.400TS	400	14'500	-	-	-	-	-	-	-	1'000
		VKF46.450TS	450	20'500	-	-	-	-	-	-	-	1'000
0		VKF46.500TS	500	21'000	-	-	-	-	-	-	-	1'000
-	\sim	VKF46.600TS	600	29'300	-	-	-	-	-	-	-	1'000
0120 °C												

³⁾ with ASK35 mounting kit

Recommended maximum velocity of flow and the butterfly valve fully open VKF41.. 4 m/s for water, 40 m/s for gas VKF46.. 4.5 m/s for water, 60 m/s for gas

Δp_s Maximum permissible differential pressure at which the motorized valve will close securely against the pressure (close off pressure).

Elite Line

Standard Line

TRV Line

On/Off Line

High-performance values and actuators for all room and zone applications

This valve/actuator combination is just right for small to mid-sized HVAC plants. It is easy to engineer, install and commission and distinguishes itself through excellent price-toperformance ratios, robustness and long life cycles, providing the prerequisite to engineering energy efficient plants. Pluggable connection cable also available halogen-free.

Benefits

- Control technologically robust valve/actuator combinations
- Energy efficient solution thanks to automated stroke adaptation
- High closing pressure

The Features at a glance

- Valves with equal-percentage characteristics
- Hot-pressed brass with external threads
- 2-port and 3-port valves with bypass
- Actuators for 3-position and 0...10 V positioning signals
- Actuators with auxiliary switch

Universal valves and actuators line

for all room and zone applications This product family offers solutions for all HVAC applications in zones and rooms. Whether electrothermic, electromotoric, NC or NO function, On/Off or modulated, the ideal combination is always available. These products harmonize perfectly with room controllers and individual room control systems. Pluggable connection cable also available halogen-free.

Broad program for radiator valves

and actuators

Radiator valves and actuators designed for heating plants using radiators with the widest possible construction and connection types. A broad product range of thermostatic, thermal and electromotoric actuators for Siemens radiator valves and valves other manufacturers. Various accessories such as hand wheels, adapters to third-party valves and compression fittings for copper, soft steel and pvc pipes with and without aluminium foil. Pluggable connection cable also available halogen-free.

The zone valves family for On/Off

control with spring return A compact product range of zone valves and actuators; typically combined with room thermostats for On/Off control or in heating as changeover valves.

Benefits

- Broad product range of actuators for any application
- Energy efficient solution thanks to automated stroke adaptation
- Hot-pressed brass for long-term stability

The Features at a glance

- Valves with linear characteristics
- External treads or compression fittings
- 2-port and 3-port valves with bypass
- Thermostatic, thermal and electromotoric actuators
- Actuators for 2-point, 3-point and 0...10 V positioning signals
- Actuators with spring returns for 2-point positioning signals

Benefits

- Broad product range of radiator valves
- Thermostatic, thermal and electromotoric actuators for Siemens and third-party radiator valves
- Integrated pre-adjustment of k_v-values for radiator and small valves
- Closed thermostat head to meet demanding hygienic requirements

The Features at a glance

- Pre-adjustements fort radiator and heating plant hydraulic balancing
- MiniCombiValves (MCV) for the automated hydraulic balancing of heating plants
- Actuators for AC/DC 24 V and AC 230 V
- Actuators for 2-point, 3-point and 0...10 V positioning signals
- EN 215

Benefits

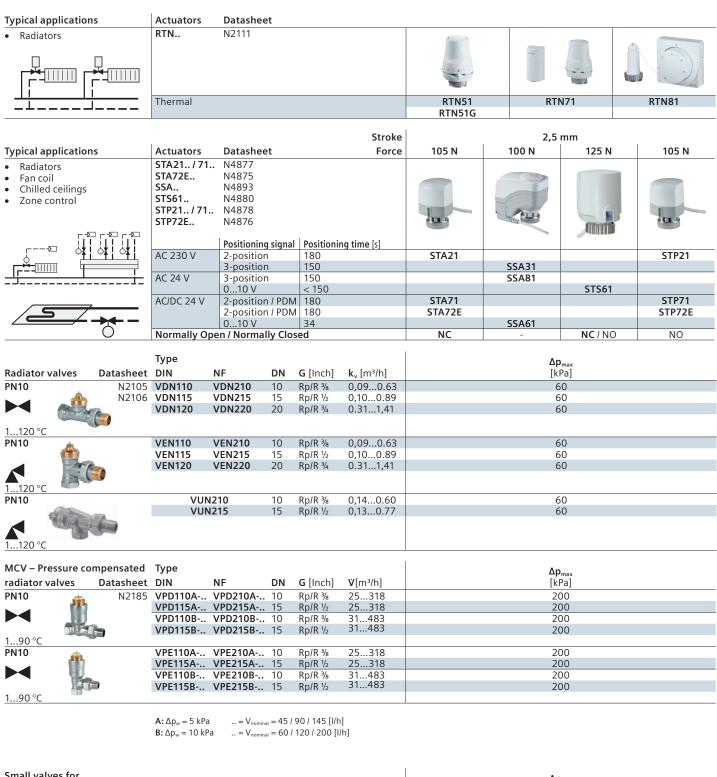
- Separate valve-actuator combination
- Ergonomc actuators
- 2-wire control with return spring

The Features at a glance

- 2-port and 3-port values in hot-pressed brass
- Actuators for AC 24 V and AC 230 V
- Auxiliary switch can also be added as an accessory
- Mounted connection cable

Elite Line

			.			Stroke			mm	
Typical applica	itions	Actuators	Datasheet			Force		20	0 N	
 Terminal units Induction units Chilled ceilings 		SSB	N4891 Positioning signal	Positioning time [s]	Auxiliar switch	у				
		AC 230 V	3-position	150	-	✓	SSE	331	SSB	31.1
		AC 24 V	3-position	150	-	✓	SSE	881	SSB	31.1
2		AC/DC 24 V		75	-	-	SSE	361	-	
Valves	Datasheet	Тур	DN	G [Inch]	k vs [m³/h]		Δp ₅ [kPa]	∆p _{max} [kPa]	Δp ₅ [kPa]	Δp ₅ [kPa]
PN16	N4845	VVP45.10		G ½B	0.25/0.4/0	1.62	725	400	725	400
FINIO	IN404J	VVP45.10		G 1/2B	1/1.6	1.05	725	400	725	400
	-	VVP45.15		G 34B	2.5		350	350	350	350
		VVP45.20-		G 1B	4		350	350	350	350
1110 °C	-	VVP45.25-		G 1¼B	6.3		300	300	300	300
PN16	_	VXP45.10	. 10	G 1/2B	0.25/0.4/0).63	-	400	-	400
		VXP45.10	. 10	G 1/2B	1/1.6		-	400	-	400
	and i	VXP45.15		G ¾B	2.5		-	350	-	350
		VXP45.20-		G 1B	4		-	350	-	350
	1	VXP45.25-	25	G 1¼B	6.3		-	300	-	300
1110 °C										
PN16		VMP45.10-		G ½B	0.25/0.4		-	400	-	400
		VMP45.10-		G 1/2B	0.63/1		-	400	-	400
		VMP45.10-		G ½B	1.6		-	400	-	400
		VMP45.15-		G 34B	2.5		-	350	-	350
<u>1110 °C</u>		VMP45.20-	20	G 1B	4		-	350	-	350


 $.. = k_{vs}$ value

Standard Line

						Stroke			2.5 mm		
Typical appli	ications	Actuators	Datasheet	:		Force	10	5 N	125 N	135 N	160 N
 Terminal units Induction units Chilled ceilings 		STP21 / 71 STP72E SFP SSP STS61	N4878 N4876 N4865 N4864 N4880				Ju				R
				signal		oning time [s]					
		AC 230 V	2-position		180		STP21				
			2-position		10					SFP21	
			3-position		150						SSP31
_		AC 24 V	2-position		10 43					SFP71	CCD04.04
	O		3-position 3-position		43 150						SSP81.04 SSP81
	- All		010 V		< 150				STS61		33701
- +		AC/DC 24 V	2-position		180		STP71	STP72E	51301		
,		ACIDE 24 V	010 V		34		51171	511721			SSP61
			57.5 V		34						SSP61P
Valves	Datasheet	Тур	DN	G [In	ch]	k _{vs} [m³/h]	Δp ₅ [kPa]	∆p _{max} [kPa]	Δp ₅ [kPa]		o _{max} Pa]
PN16		VVP47.10	10	G 1/2B		0.25/0.4	700	400	1000	4	00
	A.	VVP47.10	10	G 1/2B		0.63/1	250	250	500	4	00
	3 Mile -	VVP47.10	10	G 1/2B		1.6	150	150	300	3	00
		VVP47.15	15	G ¾B		2.5	150	150	300		00
1110 °C		VVP47.20	20	G 1B		4	100	100	175		75
PN16	alle .	VXP47.10	10	G 1/2B		0.25/0.4	-	400	-		00
		VXP47.10	10	G 1/2B		0.63/1	-	250	-		00
	2 10 100	VXP47.10	10	G ½B		1.6	-	150	-		00
	(11)	VXP47.15	15	G 3/4B		2.5	-	150	-		00
<u>1110 °C</u>		VXP47.20	20	G 1B		4	-	100	-		75
PN16		VMP47.10	10	G ½B		0.25/0.4	-	400	-		00
		VMP47.10	10	G ½B		0.63/1	-	250	-		00
\mathbf{T}		VMP47.10	10	G ½B		1.6	-	150	-		00
1 110 °C	1	VMP47.15	15	G ¾B		2.5	-	150	-	3	00

<u>1...110 °C</u>

TRV Line

Small val	lves for						Δp_{max}
higher k	vs values	Datasheet	Туре	DN	G [Inch]	k _v [m³/h]	[kPa]
PN10		N2103	VD115CLC	15	Rp/R 1/2	0.251.9	150
	Grand		VD120CLC	20	Rp/R ¾	0.282.6	150
	A STA	1	VD125CLC	25	Rp/R 1	0.252.6	150
	- English						
1110 °C							

On/Off Line

						Stroke			2,5 mm	
Typical application	ons	Actuators	Datashee	t		Force	20	D N	105 N	125 N
 Terminal units Domestic hot water storage tank charging Zone control 		SFA STA21/71 STA72E STS61	N4863 N4877 N4875 N4880	-					Jus	
Ĭ to			Positioning	signal	Positioni	ng time [s]				
		AC 230 V	2-position		10		SEA	21/18		
		71C 250 V	2-position		180		5171		STA21	
	5	AC 24 V	2-position		10		SFA7	/1/18	• · · · • ·	
	₫		010 V		< 150					STS61
	<u>ه</u> ا	AC/DC 24 V	2-position		180				STA71	
			2-position	I / PDM	180				STA72E	
Valves with thre	aded						Δps	Δp _{max}	Δps	Δp_{max}
connections	Datasheet	Type	DN	G [In	chl	k _{vs} [m³/h]	[kPa]	[kPa]	[kPa]	[kPa]
PN16		VVI46.15	15	Rp ½	-	2	300	300	200	200
	-	VVI46.20	20	Rp ¾		3.5	300	300	200	200
	1000	VVI46.25	25	Rp 1		5	300	300	200	200
	and the second									
1110 °C										
PN16	1	VXI46.15 ¹⁾	15	Rp 1/2		2	-	300	-	200
	The	VXI46.20 ¹⁾	20	Rp ¾	Ļ	3.5	-	300	-	200
	1	VXI46.25 ¹⁾	25	Rp 1		5	-	300	-	200
		VXI46.25T 2)	25	Rp 1		5	-	200	-	200
1110 °C	1									
Valves with sold	er						Δps	Δp _{max}	Δps	Δp _{max}
connections	Datasheet	Туре	DN	Inne	r Ø [mm]	k _{vs} [m³/h]	[kPa]	[kPa]	[kPa]	[kPa]
PN16		VVS46.15	15	16		2	300	300	200	200
		VVS46.20	20	22.3	7	3.5	300	300	200	200
	1.	VVS46.25	25	28.7	5	5	300	300	200	200
	1 m									
1110 °C	and the second s									
PN16		VXS46.15	15	16		2	-	300	-	200
	7-	VXS46.20	20	22.3		3.5	-	300	-	200
		VXS46.25	25	28.7	5	5	-	300	-	200
	38L									
1110 °C 🛛 🧧										

 $^{\scriptscriptstyle 1)}$ 70 % $k_{\scriptscriptstyle vs}$ in bypass, leakage rate in bypass 2..5 % of $k_{\scriptscriptstyle vs}$ value

 $^{\rm 2)}$ 100 % k_{vs} in bypass, leakage rate in bypass 0.05 % of k_{vs} value

In the case of 3-port values, the Δ pmax values apply to the «diverting» function. For noiseless operation the value of 100 kPa should not be exceeded.

AV... adapters for TRV-valves of other manufacture

For fitting the

- thermostatic actuators RTN..
- motoric actuators SSA..
- thermal actuators STA.., STS61..
 thermal actuators STP.. (for normally open applications)

to radiator valves of other manufacture according to the following table

to radiator valves of other manuf	o radiator valves of other manufacture according to the following table										
	AV51	AV52	AV53	AV54	AV55	AV56	AV57	AV58	AV59	AV60	AV61
	ا 🥌			•	-	°°.,					Aller .
Brand	Beulco	Comap	Danfoss RA-2000	Danfoss RAVL	Danfoss RAV	Giacco- mini	Herz	Oven- trop alt	Vaillant	TA	MMA Markaryd
Adapter thread	M30x1	M28x1,5					M28x1,5	M30x1		M28x1,5	M28x1,5
Remarks	1)							2)		3)	

 $^{1)}$ Not to be used with RTN.. (distributor for floor heating systems) $^{2)}$ Oventrop has been using M30 x 1.5 since 2001, requiring no adapter $^{3)}$ TA (Heimeier) is now using M30 x 1.5, requiring no adapter

Connection (M30 x 1.5) on valves of other manufacture, without adapter Heimeier / Junkers / Honeywell Braukmann / MNG / Cazzaniga / Oventrop M30 x 1.5 / TA-Type TBV-C / Beulco new

Refrigerant valves fitted with magnetic actuator

Improving the efficiency of refrigeration plants

The criteria applying to air conditioning and ventilation plants also apply increasingly to refrigeration plants. Quality is judged based on the efficiency of the refrigeration process under part load conditions. A disadvantage from the point of view of control is the fact that, for environmental reasons, refrigeration plants use ever smaller amounts of refrigerant, impacting the dynamics of the refrigeration process in a number of ways. Conventional control processes and analog expansion valves cannot cope anymore with this type of situation, leading to considerable control deviations especially under part load conditions. Clever chiller manufacturers have discovered the benefits offered by electronically controlled magnetic valves and use them on expansion, hot-gas and suction throttle applications.

In contrast to ready set thermostatic expansion valves, combinations of a proportional magnetic valve and a Polycool TM controller enable the evaporator's capacity to be matched to the actual demand by continuously changing the amount of superheat (large superheat = small capacity, small superheat = large capacity). This means that, at full load, the evaporator should hold as much liquid as possible, enabling it. For details please contact your local Siemens branch office.

Valves	PN class	DN	k _{vs} [m³/h]	k_{vs} reduced [m³/h]	Δp_{max} [kPa]	Positioning signal	Operating voltage	Datensheet
MVL661	PN40	1525	0.412	0.258	2002500	0/210 V, 0/420 mA	AC 24 V, DC 2030 V	N4714
MVF661N	PN40	25	0.166.3	0.14	2500	0/210 V, 0/420 mA	AC 24 V, DC 2030 V	N4716
M3KFXN	PN16	1550	0.630	-	300500	010 V, 420 mA, 020 V Phs	AC 24 V	N4741
M3FKLX	PN32	1550	0.630	-	200 (Gas 800)	010 V, 420 mA, 020 V Phs	AC 24 V	N4722
M3FBLX	PN40	1532	0.612	-	8002200	010 V, 420 mA, 020 V Phs	AC 24 V	N4721
Pilot valve								
M2FP03GX	PN32	-	0.3	0.3	1800	010 V, 420 mA, 020 V Phs	AC 24 V	N4731

Select reduced k_{vs} value with DIL switch

Valve sizing and actuator selection

Tools

Slide rule

The proven valve sizing rule simplifies the selection of valves and covers standard selection processes for applications with water. For central HVAC plants
Characteristics

M x	
in the	

- For central HVAC plants ■ Valves and actuators for central HVAC plants
- Order Nr. 0-01926-EN, English
- Further languages, please contact your local Siemens Simple check Tmax, Δpmax branch office

For room and zone applications

- Valves and actuators for room and zone applications
- Order Nr. 0-01927-EN, English
- Further languages, please contact your local Siemens branch office

Easy VASP

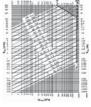
The EasyVASP (Valve and Actuator Selection Program) from Siemens is available on CD and helps you not only with standard tasks but also with complex applications. Different types of media and valve design are supported.

- Easy VASP* Version 3.3 and the subscription of the subscription of
- Central HVAC plant
- Room and zone applications
- Steam applications
- Available from your local Siemens branch office
- Downloadable on www.siemens.com/acvatix

Characteristics

Manual selection

■ Straightforward handling


- Can be installed on any PC
- Easy to use
- Suited for the most types of media
- Data can be exported and printed
- CD contains datasheets

Flow diagram

All datasheet comprise the respective flow diagram for straightforward sizing and selection of valves and actuators.

- Central HVAC plant
 - Room and zone applications
 - Steam applications

- Characteristics
- In every datasheet
- Valve-actuator combinations are listed

Valve sizing and actuator selection

Definitions

Abbreviation	Term	Unit	Definition
Δр	Differential pressure	kPa	Pressure differential between plant sections
Δp _{max}	Maximum differential pressure	kPa	Maximum permissible differential pressure across the valve's control path, valid for the entire actuating range of the motorized valve.
Δp _{V100}	Differential pressure at nominal flow rate	kPa	Differential pressure across the fully open valve and the valve's control path by a volume flow V_{100} .
Δps	Closing pressure	kPa	Maximum permissible differential pressure at which the motorized valve will close securely against the pressure (close off pressure).
Δрмν	Differential pressure across variable flow path	kPa	Oftent Δp_{MV} is not known, in which case typical practical values can be used.
Δрук	Differential pressure of flow and return	kPa	
Δp _W	Effective pressure (controlled differential pressure)	kPa	
ΔΤ	Spread	К	Temperature differential between flow and return
DN	Nominal size		Characteristic for matching parts of the piping system
Ho	Shut-off head	m	The head generated by a pump at closed value, at a given speed of rotation and a given pump liquid.
kPa	Unit of pressure	kPa	100 kPa = 1 bar = 10 mWC
mWC	Meter water column	m	
k _V		m³/h	Amount of cold water (530 °C) passing through the valve at the respective stroke and at a differential pressure of 100 kPa (1 bar).
k _{vs}	Nominal flow rate	m³/h	Nominal flow rate of cold water (5 30 °C) through the fully open valve (H100) at a differential pressure of 100 kPa (1 bar).
	Leakage rate	% k _{vs}	(H ₁₀₀) Leakage rate when valve is fully closed (H ₀) to DIN EN 1349
	Emergency positioning function		Shutoff in the event of a power failure
PN	PN class		Characteristic relating to the combination of mechanical and dimensional properties of a component in the piping system.
Phs	Phase cut control signal	V	
P _V	Valve authority		Ratio of differential pressure across fully open valve (H100) and differential pressure across valve and variable flow path. To ensure correct control, a minimum valve authority of 0.3 is required.
Q ₁₀₀	Rated capacity	kW	Plant's design capacity
Ÿ ₁₀₀	Volumetric flow	m³/h	Volumetric flow with valve fully open (H100)
ν	Kinematic viscosity	mm²/s	
С	Specific heat capacity	kJ/kgK	
ρ	Specific density	kg/m³	

Valve sizing and actuator selection

The design temperature

The design temperature is the highest (heating applications) or the lowest (cooling applications) medium temperature occurring inside the valve. When sizing valves for media other than water, note that the medium characteristics, specific heat, density and kinematic viscosity are different from those of water. All variables are dependent on the medium's temperature.

Kinematic Viscosity

In the case of kinematic viscosities v up to 10 mm²/s, no corrections are required. For the selection of actuating devices for kinematic viscosities v above 10 mm²/s, please contact your local Siemens branch office.

Valve sizing and actuator selection

Heating plant Determine differential pressure dopuis across variable flow path across variable flow path Image: Construction of the pressure dopuis with primary pump Mining circuit without playsas Mining circuit without playsas Mining circuit without playsas Mining circuit without playsas Mining circuit without playsas Mining circuit without playsas Mining circuit without playsas Mining circuit without playsas Mining circuit without playsas Mining circuit without playsas Adaw Adaw Adaw Adaw B ktra Adaw Adaw Adaw Adaw Adaw Determine the type of hydraulic circuit Image: Circuit with a pressure Aprice Image: Circuit with a pressure Aprice Differential pressure dopues Adaw Adaw Adaw Adaw Differential pressure dopues Image: Circuit with a pressure dopues Image: Circuit with a pressure dopues Image: Circuit with a pressure dopues Differential pressure dopues Image: Circuit with a pressure dopues Image: Circuit with a pressure dopues Image: Circuit with a pressure dopues Differential pressure dopues Image: Circuit with a pressure dopues Image: Circuit with a pressure dopues Image: Circuit with a pressure dopues Adaw					
Determine the type of hydraulic circuit Image: circuit of the type of hydraulic circuit Image: circuit of the type of hydraulic circuit Image: circuit of the type of hydraulic circuit of the type of hydraulic circuit of the type of hydraulic circuit Image: circuit of the type of hydraulic circuit of the type of hydraulic circuit Image: circuit of the type of hydraulic circuit of the type of hydraulic circuit Image: circuit of the type of hydraulic circuit of the type of hydraulic circuit Image: circuit of the type of hydraulic circuit of the type of hydraulic circuit of the type of hydraulic circuit Image: circuit of the type of hydraulic circuit of the type of hydraulic circuit Image: circuit of the type of hydraulic circuit of the type of hydrau	• •				
$ \begin{array}{c c c c c c } \hline Differential pressure $\Delta_{p_{no}}$ \\ \hline Differential pressure $\Delta_{p_{no}}$ \\ \hline Upped rank P_{no} \\ \hline Upp$	1 Determine differential pressure Δp_{V100}				
	Determine the type of hydraulic circuit	O E		O x	
$\frac{1}{1000} = \frac{1}{1000} = 1$	Differential pressure Δp _{MV}		th Aprins O	th Apvino O	tk ∆рузю] Ох
With primary pump dynueWith primary pump (With primary pump (With primary pump) (With primary pump) 	across variable flow path				
Δp_{exc} Typical range $2 - 5 kPa$ $5 - 15 kPa$ $2 - 5 kPa$ $3 kPa$ $3 kPa$ $3 kPa$ Δp_{exc}		5		-	
Typical value3 kPa8 kPa3 kPa8 kPa $\Delta p_{trace} > \Delta p_{trac$	Δp _{MV} Typical range				
$\Delta p_{min} \rightarrow \Delta p_{min}$ $\Delta p_{min} > \Delta p_{min}$ $\Delta p_{min} > \Delta p_{min}$ Determine the type of hydraulic circuit and select differential pressure Δp_{row} Δp_{min} $\Delta p_{min} > \Delta p_{m$					
Determine the type of hydraulic circuit and select differential pressure Δp_{100} Ventilation plant1 Determine differential pressure Δp_{100} Primary pump controlledDifferential pressure Δp_{100} Determine the rype of by Pring to alueDetermine the rype of hydraulic circuit and select differential pressure Δp_{100} Determine the type of hydraulic circuit and select differential pressure Δp_{100} Determine the k_valueMater without anti-freezeValue = $\frac{\Delta p_{100}}{\sqrt{\Delta p_{100}}}$ Determine the k_valueAprice of alue transmitAprice of alue transmit flow value k_{co}K = Δq_{10	Δp _{v100}		Δp _{V100}	$> \Delta p_{MV}$	
Ventilation plant 1 Determine differential pressure $\Delta p_{\mu_{100}}$ Determine the type of hydraulic circuit $\begin{array}{c} Differential pressure \Delta p_{\mu_{100}} \begin{array}{c} Differential pressure \Delta p_{\mu_{100}} \\ across variable flow path \begin{array}{c} Differential pressure \Delta p_{\mu_{100}} \\ across variable flow path \begin{array}{c} Differential pressure \Delta p_{\mu_{100}} \\ p = 0 \\ p$	Δp _{max}				
Determine differential pressure Δp_{visco} Determine the type of hydraulic circuit Image: Circuit Image: Circuit Image: Circuit Image: Circuit Image: Circuit Circuit <thcircu< th=""><th></th><th>Determine</th><th>the type of hydraulic circu</th><th>it and select differential p</th><th>ressure $\Delta p_{v_{100}}$</th></thcircu<>		Determine	the type of hydraulic circu	it and select differential p	ressure $\Delta p_{v_{100}}$
Determine the type of hydraulic circuit Image: Ci	Ventilation plant				
$ \begin{array}{ c c c } \hline Differential pressure \Delta_{D_{11}} \\ across variable flow path \\ across variable flow path \\ across variable flow path \\ \hline Diverting circuit \\ with 3-port value \\ \hline Diverting circuit \\ with 2-port value \\ \hline Diverting circuit \\ \hline Dive$		I	I		
$ \begin{array}{ c c c c } \hline Differential pressure \Delta p_{wa} \\ across variable flow path \\ across variable flow path \\ \hline Diverting circuit \\ \hline Diverting circuit \\ \hline With 3-port valve \\ \hline With 3-port valve \\ \hline With 2-port valve \\ \hline Primary pump constant \\ \hline Primary pump const$	Determine the type of hydraulic circuit		→ → ×	→	
Diverting circuitwith 3-port valvewith 2-port valveInrothing circuit Δp_{w} Typical range $10 - 50 k^{2} a$ $2 - 5 k^{2} a$ Δp_{w} Typical value $35 k^{2} a$ $3 k^{2} a$ $20 - 200 k^{2} a$ Δp_{w} Typical value $35 k^{2} a$ $3 k^{2} a$ $20 - 200 k^{2} a$ Δp_{w} Typical value $20 - 200 k^{2} a$ $20 - 200 k^{2} a$ Δp_{wa} Typical value $\Delta p_{wa} > \Delta p_{wa}$ $\Delta p_{wa} > \Delta p_{wa}$ Δp_{wa} $\Delta p_{wa} > \Delta p_{wa}$ 2Determine the type of hydraulic circuit and select differential pressure Δp_{wa} 3Determine the k, value $k_{x} = \frac{V_{wa}}{\sqrt{160 347}}$ 4Select nominal flow value k _{vs} $k_{x} = 0.85 \cdot k_{x}$ valueResulting Δp_{v100} $\Delta p_{wa} = h_{wa} + h_$		13			
Δp_{uv} Typical range $10 - 50$ kPa $2 - 5$ kPa Δp_n Typical value35 kPa3 kPa Δp_n Typical value $20 - 200$ kPa $20 - 200$ kPaTypical value $\Delta p_{uvo} > \Delta p_{uv}$ $\Delta p_{uvo} > \Delta p_{uv}$ $\Delta p_{uvo} > \Delta p_{uvo}$ Δp_{uvo} $\Delta p_{uvo} > \Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ Δp_{uvo} $\Delta p_{uvo} > \Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ Δp_{uvo} $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ Δp_{uvo} $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ Δp_{uvo} $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ 2Determine the type of hydraulic circuit and select differential pressure Δp_{uvo} $\Delta p_{uvo} > \Delta p_{uvo}$ $\Delta p_{uvo} > \Delta p_{uvo}$ 3Determine the k,-valuek, $u = \frac{Q_{uvo}}{\sqrt{100}}$ $V_{uvo} = \frac{Q_{uvo}}{\sqrt{100}}$ $V_{uvo} = \frac{Q_{uvo}}{\sqrt{100}}$ 4Select nominal flow value k, k, $u_{uvo} = 0$ k, $u \ge 0, 85 \cdot k, value$ c) Pressure classd) Nominal size DNb) ConnectionsInteracted, solder connections)Pre-restect value range(s) for suitable valuec) Pressure class6Check the valve's working rangea) P_{uvo} = \Delta p_{uvo} = 0 solutionb) Colse, pressure $\Delta p_{uvo} = 0$ solutions7Check the actuatorBodium temperature b) MediumBodium value solutable valuee) Axiliary functions9Check the actuator <th></th> <th></th> <th>with 3-port valve</th> <th>with 2-port valve</th> <th>_</th>			with 3-port valve	with 2-port valve	_
Typical value35 kPa3 kPa Δp_{nn} Typical range20 - 200 kPa20 - 200 kPaTypical value $\Delta p_{rmo} > \Delta p_{nn}$ Use effective Δp_{nn} value Δp_{rmo} $\Delta p_{rmo} > \Delta p_{nn}$ $\Delta p_{rmo} > \Delta p_{nn}$ $\Delta p_{max} > \Delta p_{rmo}$ $\Delta p_{rmo} > \Delta p_{rmo}$ $\Delta p_{rmo} > \Delta p_{rmo}$ $\Delta p_{max} > \Delta p_{rmo}$ $\Delta p_{rmo} > \Delta p_{rmo}$ $\Delta p_{rmo} > \Delta p_{rmo}$ 2Determine two umetric flow V ₁₉₀ Water without anti-freeze $V_{mo} = \frac{Q_{mo}}{c \Delta T_p}$ Water without anti-freeze $V_{mo} = \frac{Q_{mo}}{c \Delta T_p}$ 3Determine the k_r-valuek_r = $\frac{V_{mo}}{\sqrt{\frac{Q_{Prom}}{100}}}$ Water without anti-freeze $V_{mo} = \frac{Q_{mo}}{c \Delta T_p}$ 4Select nominal flow value k_mk_r > 0.85 · k_r-valuec Pressure class 				Primary pu	mp controlled
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
Typical valueUse effective Δp_{w} value Δp_{ti0} $\Delta p_{v100} > \Delta p_{wv}$ $\Delta p_{v_{00}} \geq \frac{\Delta P_{vg}}{2}$ Δp_{max} $\Delta p_{max} > \Delta p_{v100}$ $\Delta p_{max} > \Delta p_{vn}$ Δp_{max} $\Delta p_{max} > \Delta p_{v100}$ $\Delta p_{max} > \Delta p_{vn}$ 2 Determine volumetric flow V_{100} Water without anti-freeze $V_{me} = \frac{Q_{max}}{1,163 \cdot AT}$ Water with anti-freeze $V_{me} = \frac{Q_{max}}{0,000} = \frac{Q_{max}}{0,0000} = \frac{Q_{max}}{0,0000} = \frac{Q_{max}}{0,00000} = \frac{Q_{max}}{0,0000000000000000000000000000000000$		55 KFd	JKrd	20 – 200 kPa	20 – 200 kPa
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \Delta p_{max} = \Delta p_{vrico} = \Delta$	Δρ ₁₀₀	Δp _{V100}	$p > \Delta p_{MV}$	Δp _{v10}	$p_{00} \ge \frac{\Delta p_{VR}}{2}$
Determine the type of hydraulic circuit and select differential pressure $\Delta p_{v_{100}}$ 2Determine the type of hydraulic circuit and select differential pressure $\Delta p_{v_{100}}$ 3Determine the k,-value $k_v = \sqrt{\frac{Q_{00}}{\sqrt{\Delta P_{vin0}}}}$ Water without anti-freeze $v_{oo} = \frac{Q_{00}}{\alpha_{odT} \cdot p}$ 3Determine the k,-value4Select nominal flow value k_{vs} $k_v = \frac{v_{100}}{\sqrt{\Delta P_{vin0}}}$ 4Select nominal flow value k_{vs} $k_v = 20.85 \cdot k_v$ -valueResulting Δp_{v100} $\Delta p_{voin} = 100 \cdot \left(\frac{v_{100}}{k_v}\right)^2$ 5Select suitable valve range6Check valve authority P_v (control stability) $P_v = \frac{\Delta p_{voin}}{\Delta p_{voin} + \Delta p_{win}} = 0.25 \dots 0.8 enter \Delta p_{voin} of step 4$ $P_v = \frac{\Delta p_{voin}}{\Delta p_{voin} + \Delta p_{win}} = 0.25 \dots 0.8 enter \Delta p_{voin} of step 4$ 7Check the valve's working rangea) Advect authority P_v (control stability) $P_v = \frac{\Delta p_{voin}}{\Delta p_{voin} + \Delta p_{win}} = 0.25 \dots 0.8 enter \Delta p_{voin} of step 4$ 8Select the actuatorPre-select available types of actuators: a) Supply voltag b) Control signal c) Actuator positioning timed) Auxiliary functions c) Actuator positioning time9Check the actuator's working rangeAvailable types of actuators c) Actuator positioning time9Check the actuator's working range9Check the actuator's working range<					-
$V_{uo} = \frac{Q_{uo}}{1.163 \cdot AT}$ $V_{uo} = \frac{Q_{uo}}{c \cdot AT \cdot p}$ 3 Determine the k,-value $k_{v} = \frac{V_{uo}}{\sqrt{\frac{ \Delta p_{vico} }{100}}}$ 4 Select nominal flow value k_{vs} $k_{v} \geq 0.85 \cdot k_{v}$ valueResulting Δp_{V100} $\Delta \rho_{vico} = 100 \cdot \left(\frac{V_{uo}}{k_{vs}}\right)^{2}$ 5 Select suitable valve rangea) Type of valve (2-position, 3-position, 3-position with bypass) (flanged, threaded, solder connections)Pre-select valve rangePre-select valve range(s) for suitable valve6 Check valve authority P_{v} (control stability) $P_{v} = \frac{\Delta p_{vico}}{\Delta p_{vico}} + \Delta p_{vico}} of step 4$ 7 Check the valve's working rangea) Medium temperature b) Medium8 Select the actuatorPre-select available types of actuators: a) Supply voltag b) Control signal c) Actuator positioning time9 Check the actuator's working rangeAvailable types of actuators with: a) Differential pressure $\Delta p_{mixo} > \Delta p_{vico}$ b) Close pressure $\Delta p_{v} > H_{0}$ 9 SelectionValve and suitable actuator					
$V_{uo} = \frac{Q_{uo}}{1.163 \cdot AT}$ $V_{uo} = \frac{Q_{uo}}{c \cdot AT \cdot p}$ 3 Determine the k,-value $k_{v} = \frac{V_{uo}}{\sqrt{\frac{ \Delta p_{vico} }{100}}}$ 4 Select nominal flow value k_{vs} $k_{v} \geq 0.85 \cdot k_{v}$ valueResulting Δp_{V100} $\Delta \rho_{vico} = 100 \cdot \left(\frac{V_{uo}}{k_{vs}}\right)^{2}$ 5 Select suitable valve rangea) Type of valve (2-position, 3-position, 3-position with bypass) (flanged, threaded, solder connections)Pre-select valve rangePre-select valve range(s) for suitable valve6 Check valve authority P_{v} (control stability) $P_{v} = \frac{\Delta p_{vico}}{\Delta p_{vico}} + \Delta p_{vico}} of step 4$ 7 Check the valve's working rangea) Medium temperature b) Medium8 Select the actuatorPre-select available types of actuators: a) Supply voltag b) Control signal c) Actuator positioning time9 Check the actuator's working rangeAvailable types of actuators with: a) Differential pressure $\Delta p_{mixo} > \Delta p_{vico}$ b) Close pressure $\Delta p_{v} > H_{0}$ 9 SelectionValve and suitable actuator	2 Determine volumetric flow V ₁₀₀	Water witho	ut anti-froozo	Wator with	h anti-franza
3 Determine the k _v -value k _v = $\frac{V_{100}}{\sqrt{\frac{\Delta P_{v100}}{100}}}$ 4 Select nominal flow value k _{vs} k _v $\geq 0.85 \cdot k_r$ -value Resulting Δp_{v100} $\Delta \rho_{vn0} \equiv 100 \cdot \left(\frac{V_{100}}{k_{vs}}\right)^2$ C) Pressure class 5 Select suitable valve range a) Type of valve (2-position, 3-position, 3-position with bypass) d) Nominal size DN b) Connections (flanged, threaded, solder connections) Pre-select valve range(s) for suitable valve Pv $\frac{\Delta P_{v100}}{\Delta P_{v100} + \Delta P_{av}} \geq 0.250.8$ enter Δp_{v100} of step 4 Pv $\frac{\Delta P_{v100}}{\Delta P_{v100} + \Delta P_{av}} \geq 0.250.8$ enter $\Delta p_{v100} = 0.250.8$ enter $\Delta p_{v10} = 0.25$					
Resulting Δp_{v100} $\Delta \rho_{v100} = 100 \cdot \left(\frac{V_{100}}{k_{cs}}\right)^2$ 5Select suitable valve rangea) Type of valve (2-position, 3-position with bypass)c) Pressure class (d) Nominal size DN (d) Nominal size DN b) Connections (flanged, threaded, solder connections)6Check valve authority P_v (control stability) $P_v = \frac{\Delta P_{v100}}{\Delta \rho_{vr00} + \Delta \rho_{ttro}} \ge 0.250.8$ enter Δp_{v100} of step 4 $P_v = \frac{\Delta P_{v100}}{\Delta \rho_{vR}} \ge 0.250.8$ enter Δp_{v100} of step 47Check the valve's working rangea) Medium temperature b) Mediuma) Medium temperature 	3 Determine the k _v -value	$k_{v} = \frac{V_{100}}{\sqrt{\Delta \rho_{v100}}}$,163·ΔT	• 100	c·∆T·p
Select suitable valve rangea) Type of valve (2-position, 3-position, 3-position with bypass) b) Connections (flanged, threaded, solder connections)c) Pressure class (2-position, 3-position with bypass) d) Nominal size DN b) Connections (flanged, threaded, solder connections)6Check valve authority Pv (control stability) $P_v = \frac{\Delta P_{v100}}{\Delta \rho_{vn0} + \Delta \rho_{wv}} \ge 0.250.8$ enter $\Delta \rho_{v100}$ of step 4 $P_v = \frac{\Delta P_{v100}}{\Delta \rho_{vR}} \ge 0.250.8$ enter $\Delta \rho_{v100}$ of step 47Check the valve's working range b) Mediuma) Medium temperature b) Mediumd) Spring return facility e) Auxiliary functions c) Actuator positioning time9Check the actuator's working range a) Differential pressure Δp_{v100} b) Close pressure $\Delta p_v > H_0$ b) Close pressure $\Delta p_v > H_0$ 9Check the actuator's working range b) Valve and suitable actuatorAvailable actuatorb) Close pressure $\Delta p_v > H_0$	4 Select nominal flow value k _{vs}	$k_{vs} \ge 0.85 \cdot k_{v}$ -value			
(2-position, 3-position, 3-position with bypass) b) Connections (flanged, threaded, solder connections)d) Nominal size DNb) Connections (flanged, threaded, solder connections)Pre-select valve range(s) for suitable valvePv = $\frac{\Delta P_{v100}}{\Delta p_{vr0}} \ge 0.250.8$ enter Δp_{vr00} of step 4Pv = $\frac{\Delta P_{v100}}{\Delta p_{vR}} \ge 0.250.8$ enter Δp_{vr00} of step 47 Check the valve's working rangea) Medium temperature b) MediumPre-select available types of actuators: a) Supply voltag b) Control signal c) Actuator positioning timed) Spring return facility e) Auxiliary functions c) Actuator positioning time9 Check the actuator's working rangeAvailable types of actuators with: a) Differential pressure $\Delta p_{max} > \Delta p_{v100}$ b) Close pressure $\Delta p_s > H_0$ SelectionValve and suitable actuator	Resulting Δp _{V100}	$\Delta \overline{\rho}_{V100} = 100 \cdot \left(\frac{\dot{V}_{100}}{k_{VS}}\right)^2$			
6 Check valve authority P_v (control stability) $P_v = \frac{\Delta p_{v100}}{\Delta p_{vr0} + \Delta p_{wv}} \ge 0.250.8$ enter Δp_{v100} of step 4 $P_v = \frac{\Delta p_{v100}}{\Delta p_{vR}} \ge 0.250.8$ enter Δp_{v100} of step 4 7 Check the valve's working range a) Medium temperature b) Medium $P_v = \frac{\Delta p_{v100}}{\Delta p_{vR}} \ge 0.250.8$ enter Δp_{v100} of step 4 8 Select the actuator Pre-select available types of actuators: a) Supply voltag b) Control signal c) Actuator positioning time d) Spring return facility e) Auxiliary functions c) Actuator positioning time 9 Check the actuator's working range Available types of actuators with: a) Differential pressure $\Delta p_{max} > \Delta p_{v100}$ b) Close pressure $\Delta p_s > H_0$ Selection Valve and suitable actuator Valve and suitable actuator	5 Select suitable valve range	(2-position, 3-position b) Connections (flanged, threaded, so	older connections)		
7 Check the valve's working range a) Medium temperature b) Medium b) Medium 8 Select the actuator Pre-select available types of actuators: a) Supply voltag d) Spring return facility b) Control signal e) Auxiliary functions c) Actuator positioning time e) Auxiliary functions 9 Check the actuator's working range Available types of actuators with: a) Differential pressure Δp _{max} > Δp _{V100} b) Close pressure Δp _s > H ₀ Selection Valve and suitable actuator	6 Check valve authority P _v (control stability)			$P_v = \frac{\Delta p_{v100}}{\Delta p_{vR}} \ge 0.250.8$	enter $\Delta p_{_{V100}}$ of step 4
a) Supply voltag d) Spring return facility b) Control signal e) Auxiliary functions c) Actuator positioning time e) Auxiliary functions 9 Check the actuator's working range Available types of actuators with: a) Differential pressure Δp _{max} > Δp _{V100} b) Close pressure Δp _s > H ₀ Selection Valve and suitable actuator	7 Check the valve's working range	a) Medium temperature		1	
a) Differential pressure $\Delta p_{max} > \Delta p_{v100}$ b) Close pressure $\Delta p_s > H_0$ SelectionValve and suitable actuator	8 Select the actuator	a) Supply voltag b) Control signal			
	9 Check the actuator's working range			b) Close pressure $\Delta p_s > H$	Ho
	Selection	Valve and suitable actua	tor		19

Siemens Switzerland Ltd Building Technologies Group International Headquarters Gubelstrasse 22 CH-6301 Zug Tel +41 41 724 24 24 Fax +41 41 724 35 22

Siemens Building Technologies Ltd Brunel House Sir William Siemens Square, Frimley Camberley Surrey, GU16 8QD United Kingdom Tel +44 1276 696000 Fax +44 1276 696133

Siemens Ltd Building Technologies Units 1006-10 10/F, China Resources Building 26 Harbour Road Wanchai, Hong Kong Tel +852 2870 7888 Fax +852 2870 7880

The information in this document contains general descriptions of technical options available, which do not always have to be present in individual cases. The required features should therefore be specified in each individual case at the time of closing the contract.

Subject to change • Order no. Z-C00020403EN • © Siemens Switzerland Ltd • Printed in Switzerland • 30712 Ni/Ah